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1. INTRODUCTION

Physically accurate modeling of illumination finds
applications in architecture, design, cinematography,
design of lighting devices, and in the construction of
photorealistic images in virtual reality. Despite the
advances in computer hardware, the time required to
produce realistic images remains too large for interac-
tive applications. The graphics hardware, which
ensures the fast rendering of 2D and 3D graphics, is not
designed for physically accurate modeling of illumina-
tion; therefore, algorithmic methods of image genera-
tion remain one of the problems in modern computer
graphics.

Algorithms of realistic image generation, which use
accurate illumination models, are based on solving the
rendering equation [1]. This equation describes the

radiance, 
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), of the point  of the surface in the
direction 

 

ω

 

; it has the recurrent form
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where 
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 is the emittance of the point of the surface due
to the direct illumination, and the integral operator 

 

I

 

,
which takes into account the visibility of the scene

points 
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( , 
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'), describes the interaction of the light
arriving from other illuminated surfaces (Fig. 1):
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In this equation, the optical properties of the surface
are given by the bidirectional reflectance (refraction)
distribution function 

 

f

 

r

 

 (BRDF), which is the ratio of the
incoming and outgoing radiant power:

(3)

Along with the energy forms of the rendering equa-
tion (1), (2), one can consider its dual form describing

the potential visibility function 

 

W

 

( , 

 

ω

 

') (this function

expresses the visibility from the observation point  in
the direction 

 

ω

 

' (Fig. 2)):
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—Algorithms used to generate physically accurate images are usually based on the Monte Carlo meth-
ods for the forward and backward ray tracing. These methods are used to numerically solve the light energy
transport equation (the rendering equation). Stochastic methods are used because the integration is performed
in a high-dimensional space, and the convergence rate of the Monte Carlo methods is independent of the dimen-
sion. Nevertheless, modern studies are focused on quasi-random samples that depend on the dimension of the
integration space and make it possible to achieve, under certain conditions, a high rate of convergence, which
is necessary for interactive applications. In this paper, an approach to the development of an algorithm for the bidi-
rectional ray tracing is suggested that reduces the overheads of the quasi-Monte Carlo integration caused by the high
effective dimension and discontinuity of the integrand in the rendering equation. The pseudorandom and quasi-ran-
dom integration methods are compared using the rendering equations that have analytical solutions.
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Fig. 1.

 

 Components of the rendering equation.
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Here, 

 

W

 

e

 

 is the direct visibility in the direction of obser-
vation, and the integral operator 

 

I

 

* as adjoint of 

 

I

 

:

(5)

The methods of image generation based on solving
the rendering equation (1) for the radiance are called
the forward methods, while those based on the potential
equation (4) are called the backward methods. A gen-
eral classification of methods for solving integral equa-
tions is given in [2]. These methods are classified into
three types: 

 

inversion, iteration

 

, and 

 

expansion.

 

 The
expansion method is the most flexible and universal
one: it is analyzed in [3]. As applied to the rendering
equation (1) and the potential equation (4), the expan-
sion method reduces the solution to finding certain inte-
gral sums (see Table 1).

The 

 

forward ray tracing

 

 uses the expansion method
to solve Eq. (2); it is called the photon tracing method.
The representation of the propagation of photons in the

form of the infinite series 

 

L

 

e

 

 has a simple intu-
itive meaning (see Fig. 3).
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 is the contribution of the direct light, 
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 is the
contribution of light that comes from a light source
once reflected, 

 

I

 

2

 

L

 

e

 

 is the contribution of the twice
reflected light, etc. It is easily seen that the dimension
of the term 

 

I

 

d

 

L

 

e

 

 is 2

 

d

 

 + 2, which results in a high-dimen-
sional integral. The result of the forward photon tracing
is a photon or illumination map given on a grid. It is
rendered using a standard graphical interface (for
example, OpenGL).

The 

 

ray backtracing

 

 also called path tracing gives a
solution to the potential equation (5). Every path being
traced begins at the observation point and makes contri-
bution to the corresponding pixel of the image (Fig. 4);
thus, the image is formed on the screen. Being dual to
the photon tracing method, the path tracing has the
same dimension.
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The expansion method is often implemented with
the use of the Monte Carlo method, which is character-
ized by the independence of integral dimension. The
error of this method is a random noise, which is inde-
pendent of the number of reflections and refractions.
For 

 

N

 

 traced rays, the error is 

 

O

 

(

 

N

 

–1/2

 

). Figure 5 shows
the images obtained by the Monte Carlo method for the
first 

 

n

 

 terms of the series (for n = 0, n = 1, n = 2, and
n = 4).

It is known that the sample in the classical Monte
Carlo method need not necessarily be random in order
for the integral sum to converge to the integral being
evaluated. Many nonrandom (so-called quasi-random)
number sequences, for example, LPτ-sequences [4], are
known that under certain conditions ensure a higher
rate of convergence of the integral sums. The studies [5,
6] are devoted to the use of quasi-Monte Carlo integra-
tion in the implementation of the expansion method.

Bidirectional methods are widely used in expansion
algorithms for the generation of realistic images. These
methods combine the forward and backward ray trac-
ing. An efficient implementation of bidirectional meth-
ods is achieved by tracing only the rays that make a sub-
stantial contribution to the image being generated. The
implementation of the bidirectional ray tracing assumes
that an optimization problem is solved to minimize the
number of traced rays that ultimately transfer energy

h(y→, ω')

ω'
θ

ω
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W(y→, ω)

Fig. 2. Components of the potential equation.

Table 1.  The expansion method

For the rendering equation
(forward tracing)

For the potential equation
(backward tracing)

L = Le + IL ⇒ W = We + I*W ⇒
L = Le + I(Le + IL) ⇒ W = We + I*(We + I*W) ⇒
L = Le + ILe + I2L ⇒ W = We + I*We + I*2W ⇒

L IiLe In 1+ L ⇒+
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n

∑= W I*i
We I*n 1+
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Fig. 3. Forward ray tracing.
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from the light source to the observer. Various
approaches to the construction of an algorithm for the
bidirectional ray tracing are discussed in [7–9].

The change to the quasi-Monte Carlo integration is
formally very simple: the pseudorandom number gen-
erator used in the classical Monte Carlo method is
replaced by a quasi-random number generator.
Although the advantages of the use of a quasi-random
sequence for the integration are obvious, the successful
application depends on the dimension of the integration
domain and the smoothness of the integrand. In this
paper, we develop an algorithm for the bidirectional ray
tracing that minimizes the overhead of quasi-Monte
Carlo integration caused by the high dimension of the
integration domain and discontinuity of the integrand.

2. THE COMPONENT SEPARATION METHOD

The major contribution to the violation of smooth-
ness is made by the direct illumination component,
especially if it comes from point or remote light
sources, because they cast sharp shadows and create
large gradients. The computation of direct illumination

(a) (b)

(c) (d)

Fig. 5. Forward ray tracing. (a) L = Le; (b) L = Le + ILe; (c) L = Le + ILe + I2Le; (d) L = .I
i
L

e
i 0=
4∑

Fig. 4. Ray backtracing.

I*We
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is fairly simple, it is reasonable to eliminate point light
sources from the expansion method altogether.

Consider the integral sum for the rendering equation
in the expansion method (Table 1):

Here Lep is the luminous intensity of the light sources
for which the direct illumination component can be
computed analytically on the surfaces of the scene, and
Ler is the luminous intensity of all other sources, for
which the direct illumination is computed by photon
tracing. Replacing the luminous intensity of the point
light sources by the luminous intensity of the grid ele-
ments corresponding to the illuminated surfaces, we
obtain a new set of light sources

Thus, the numerical integration is applied to the
modified rendering equation

with a smoother integrand.
It was noted in [10] that, for diffusive surfaces, for

which the luminous intensity is independent of the
direction of the incident light, it is obviously sufficient
to store only the quantitative component of the lumi-
nous intensity ILep for each element of the grid. For
nondiffusive surfaces, ILep depends on the direction of
the incident light Lep. In this case, it is reasonable to
separately store the direct illumination received by each
element of the grid from each pointwise light source.
Then, the desired ILep can be computed by demand for
the desired light source and the corresponding direction
Lep on the basis of the stored data. In [11], one can find
an example of the implementation of the stochastic
photon tracing algorithm in which the direct illumina-
tion represented by a piecewise linear function on a tri-

L IiLe
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∞

∑≈ Le IiLe

i 1=

∞

∑+ Lep Ler IiLe.
i 1=

∞

∑+ += =

Le* Le Lep ILep.+–=

L Lep IiLe*

i 0=

∞

∑+≈

angular grid is recalculated into the probability distri-
bution function pi to pseudorandomly generate the sec-
ondary photons. For a prescribed constraint imposed on
the maximal size of triangular cell and an adaptive
algorithm for the generation of a triangular grid for
direct illumination, we construct a discrete cumulative
distribution function pi in the form of an array of

dimension N = , where L is the number of
light sources for which the direct illumination is calcu-
lated analytically and N(i) is the number of triangular
cells for which the illumination from the ith light source
is calculated.

Note that when the probability distribution function
is constructed to select a triangle–source pair, the pos-
sible absorption of light is taken into account. Thus, the
probability of absorption at the stage of an event gener-
ation is minimized; therefore, the method does not
waste time and quasi-random numbers to trace the pho-
tons that will be surely absorbed before they contribute
to the illumination map. An excessive use of members
of the quasi-random sequence results in the degradation
of performance due to two reasons: the effective dimen-
sion of the algorithm increases, and the problem
becomes more “discontinuous” [12].

3. DECREASING THE EFFECTIVE DIMENSION 
OF THE PHOTON TRACING PROBLEM

The dimension of the expansion method for solving
the rendering equation is infinite independently of
whether it is used in the context of the bidirectional ray
tracing algorithm or separately. Theoretically, the tra-
jectory of a photon or a backward path can consist of an
infinite number of segments, and it is impossible to a
priori determine the dimension of the random vector
{η1, …, ηi} that is required to realize such a trajectory.
For example, η0 corresponds to the choice of the
source–triangle pair, η1 and η2 correspond to the choice
of a point in the triangle, η3 corresponds to the choice
of an alternative event (reflection, or refraction, or absorp-
tion, depending on the optical properties of the surface), η4
and η5 correspond to the choice of the photon emission

N i( )
i 1=
L∏

Fig. 6. Octant of a sphere.

A B
C D

F
E

Fig. 7. Diffusive cube.
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direction, and so on. Actually, photons are absorbed, and
the probability of an infinitely long trajectory is zero.
Therefore, we use the concept of effective dimension
defined as the average (rather than maximal) number of
elements ηi required to trace a single photon (a path).

In the process of tracing, some events assume a choice
of an outcome among a number of possible outcomes;
thus, the probability of such an event has a discrete density
distribution. It is well known that when discrete events are
chosen, one may use the same pseudorandom value sev-
eral times applying a renormalization procedure. This
method, which was first proposed to accelerate the ran-
dom number generator [12], is called the modified super-
position method. Formally, if a discrete event depends on
whether or not a quasi-random number s falls into the
interval [a, b), the renormalization means that the next ran-
dom number s' can be obtained by

without increasing the effective dimension of the algo-
rithm.

It must be taken into account that the successive use
of the modified superposition method several times and
its use for a large number of possible events results in a

s ' s a–( )/ b a–( )=

nonuniform distribution of the quasi-random numbers.
In this case, the advantages of the quasi-Monte Carlo
integration in terms of the rate of convergence are lost.
Then, one has to abandon the modified superposition
method.

To reduce the effective dimension of the ray tracing
algorithm, we must do away with rejection sampling
methods. Conventionally, such methods are used gener-
ate directions on the basis of photometric characteris-
tics of the light sources and diffusive properties of sur-
faces specified by the bidirectional reflectance function.
An example of replacing the rejection sampling method
by the inverse function method is presented in [13].

The effective dimension of the quasi-Monte Carlo
tracing algorithm can be reduced by using random
events instead of quasi-random ones if this does not sig-
nificantly affect the quasi-random nature of the photon
trajectory selection, which accelerates the convergence
of the integral sum.

We used this kind of randomization to select a pho-
ton emission point within a triangle. If the area of the
triangles is small, the influence of the randomization on
the selection of trajectories is insignificant, and the
advantages of the quasi-Monte Carlo method in terms
of the convergence rate are retained. The effective
dimension of the quasi-Monte Carlo integration is then
reduced by two units. In addition, the randomization in
the selection of the emission point within a triangle
allows one to use the statistical techniques to evaluate
the accuracy of modeling.

4. THE BIDIRECTIONAL RAY 
TRACING METHOD

The techniques outlined above make it possible to
reduce the effective dimension of the photon tracing
algorithm and thus improve the efficiency of the use of
the quasi-Monte Carlo integration for solving the ren-
dering equation by the expansion method. We may

ABD
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L M N O
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2 m

2 m

Fig. 8. CIE TC.3.33 test.

(‡) (b)

Fig. 9. (a) Pseudo-Monte Carlo integration; (b) Quasi-Monte Carlo integration.
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assume that the photon tracing based on the use of
quasi-random number sequences can efficiently pro-
duce an illumination map that is independent of the
position of the camera and in which the contribution of
photons with a low effective dimension is evaluated
most accurately. We use the triangular grid that coin-
cides with the initial triangulation of the scene surfaces.

The ray backtracing in the proposed bidirectional
tracing does not require integration. The paths from the
camera are traced through the screen pixel until they
intersect a scene surface, where the contribution of the
direct illumination and of the secondary illumination
from the illumination map are evaluated, and the next
iteration  is constructed for the tree of uniquely
determined specularly reflected or refracted paths:

Here, N is maximum allowed depth of the tracing tree,
and the operator 〈u, v〉 represents the transfer of the
light energy that is registered in the illumination map
for the trajectories of photons u in the backward direc-
tion v from the camera. The computation of the illumi-
nation map is independent of the position of the cam-
era, and the construction of the next iteration  ter-
minates on diffusive surfaces. The advantage of
backtracing with the use of the specular ray tree is that
the image can be obtained very quickly when the posi-
tion of the camera changes. Disadvantages of this
approach that affect the accuracy of the resulting
images are as follows.

1. An element of the illumination map approximates
the illumination accumulated on a triangular grid. This
representation is rather coarse, and it gives acceptable
results only for smooth secondary illumination func-
tions.

2. As a rule, the illumination map does not contain
information about the distribution of directions of the
incident photons; therefore, the transformation 〈L – Lep,
We〉 of the accumulated illumination into the luminous
intensity yields an exact value only for surfaces with
perfectly diffusive properties. For the optical properties
represented by bidirectional reflectance (refraction)
functions, the account for the illumination map results
in errors.

3. The direct use of the inaccurate value of the illu-
mination L – Lep accumulated on an element of the map
is impractical. The accuracy of quasi-Monte Carlo inte-
gration used in the photon tracing can be different for
different areas of the map due to the high effective
dimension, insufficient illumination, or specific fea-
tures of photon propagation.

Ispec*

W I*iWe We Lep Ispec* We,〈 〉
i 0=

N

∑+≈
i 0=

∞

∑≈

+ L Lep– Ispec*i We,〈 〉 .
i 0=

N

∑

Ispec*
The increase of the backtracing dimension can elim-

inate these disadvantages, but it slows the computations
because it uses the full integration. We believe that it is
best to use quasi-Monte Carlo integration while slightly
increasing the backtracing dimension:

On the one hand, the use of the integral operator I*
in the ray backtracing allows one to considerably
improve the accuracy of modeling. On the other hand,
the low-dimensional quasi-Monte Carlo integration of
the smooth secondary illumination accumulated on the
map ensures a high rate of convergence.

5. RESULTS AND DISCUSSION

We implemented the bidirectional ray tracing algo-
rithm that makes an efficient use of quasi-Monte Carlo
integration for high dimensions and for nonsmooth
integrands.

W I*iWe We Lep I*We,〈 〉+≈
i 0=

∞

∑≈

+ L Lep– I*We,〈 〉 Lep Ispec*i We,〈 〉
i 1=

N

∑+

+ L Lep– Ispec*i We,〈 〉 .
i 1=

N

∑

Table 2.  Results of the photon tracing

Time
(s)

Pseudoerror
(%)

Quasi-error
(%)

Acceleration
(quasi/pseudo)

6 4.604 6.45 0.71

12 4.356 4.488 0.97

24 4.591 4.728 0.97

48 4.09 2.181 1.88

96 5.141 2.228 2.31

192 1.564 0.914 1.71

384 1.627 0.39 4.17

Table 3.  Results of the bidirectional tracing

Time
(s)

Pseudoerror
(%)

Quasi-error
(%)

Acceleration
(quasi/pseudo)

6 43.16 7.05 8.17

12 11.64 2.75 5.65

24 8.78 2.45 4.79

48 5.69 2.08 3.65

96 5.05 1.87 3.60

192 3.26 1.39 3.12

384 2.69 1.37 2.62
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The comparison of the quasi-Monte Carlo integra-
tion based on LPτ-sequences [4] with the conventional
Monte Carlo method both for photon tracing and bidi-
rectional ray tracing was performed for scenes in which
the total luminance can be calculated analytically at
certain test points.

5.1. Octant of a Sphere

The secondary illumination can be calculated
exactly if the form factor of all pairs of points is the
same [14]. The scene consists of the 1/8th part of the
unit diffusive sphere cut by three specular coordinate
planes with the reflectance 1.0, 0.8, 0.6 and of a homo-
geneous point light source with the luminous intensity
of 100 cd inside the spherical segment at the point with
the coordinates (0.2, 0.4, 0.6). The generalized form
factor, which characterizes the transfer of energy
between diffusive and diffusive–specular–diffusive sur-
faces is the same for all pairs of points of the part of the
sphere under consideration. The theoretical value of the
total illumination at the center of the octant at the point

 is 1353.247 lx. Table 2 shows the errors

of modeling the illumination by the photon tracing
method. The effective dimension of the photon tracing
for the octant of a sphere is 4.3.

5.2. Diffusive Cube

The scene is cube of the size 10m × 10 m × 10 m
with a point light source with the luminous intensity of
50000 cd at its center. This light produces the direct
illumination of 2000 lx at the nearest points of the cube
faces (the points A). The light propagates diffusively
inside the cube without leaving it. The reflectance of the
diffusive faces is 2/3. Thus, a large part of illumination
is created by the reflected light. Both the light and the
cube surface are white.

The theoretical values of the luminous intensity at
the six points on the faces (the points A–F) can be found
in [14]. Using the symmetry of the scene, we find the
difference between the modeled and theoretical values
on the 5-by-5 grid on each internal surface of the cube
faces. Thus, the error is calculated in the L2 norm on the
basis of 150 points.

Table 3 shows the errors of modeling the illumina-
tion by the bidirectional ray tracing method.

The effective dimension of the photon tracing
method for the diffusive cube is six and that of the back-
ward ray tracing, two.

5.3. CIE TC.3.33 Test

This test was proposed in [15] to analyze application
programs aimed at the design of daylight illumination
in rooms. The scene is an absolutely black room with an
open window and a plane that imitates a ground with a

1

3
------- 1

3
------- 1

3
-------, , 

 

30% reflectance. The theoretical values are calculated
at the points A–Q provided that the homogeneous lumi-
nous intensity of celestial hemisphere is 1000 cd/m2.

We compared the results produced by the bidirec-
tional ray tracing methods that differ in the implemen-
tation of the path backtracing. The average error of the
algorithm that does not perform integration at the back-
tracing stage was 15%, and the biggest error of 48.4%
was at the point J. The average error of the backtracing
algorithm based on the quasi-Monte Carlo integration
of the minimal dimension was 2%, and the maximum
error of 7.2% was at the point C. Moreover, the latter
algorithm proved to be about 100 times faster than the
former one.

5.4. A Sphere with a Bidirectional Reflectance Function

The ray backtracing methods with the quasi-Monte
Carlo and pseudo-Monte Carlo integration were com-
pared by solving the problem of color filling a sphere with
the silver reflectance properties given the tabulated bidi-
rectional reflectance distribution function (BRDF). The
sphere is surrounded by a spherical high dynamic range
image (HDRI) used as the source of illumination [16].1 

The initial number of generated rays was 128 per
pixel, and the pixel was filled when the error of integra-
tion was not greater than 2%. The error of the quasi-
Monte Carlo integration was evaluated approximately
by dividing the rays being traced into two groups judg-
ing by the first quasi-random number. The time taken
by the method based on the pseudo-Monte Carlo and
quasi-Monte Carlo integration was 179 and 122 sec-
onds, respectively.

6. CONCLUSIONS

An efficient bidirectional ray tracing method based
on the quasi-Monte Carlo integration was developed
and implemented in the framework of developing a
realistic visualization system based on physically accu-
rate optical modeling. On the whole, the results show
that the quasi-Monte Carlo method outperforms the
conventional pseudo-Monte Carlo method in terms of
the convergence rate for the forward and backward ray
tracing (tests 5.1 and 5.4). The standard CIE TC.3.33
test 5.3 (the design of daylight illumination in rooms)
shows that the use of the minimum dimension ray back-
tracing is reasonable, and testing the convergence rate
of the bidirectional ray tracing (test 5.2) demonstrates
the efficiency of the implementation.

The bidirectional ray tracing method was used in
several software systems produced by the Intega Inc.
company [17].

1 Full-color images are available in the internet version of this paper at
http://www.keldysh.ru/pages/cgraph/article/dep20/kop2004.pdf.
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